
FastLane: Agile Drop Notification for Datacenter

Networks

David Zats
Anand Padmanabha Iyer
Ganesh Ananthanarayanan
Randy H. Katz
Ion Stoica
Amin Vahdat

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2013-173

http://www.eecs.berkeley.edu/Pubs/TechRpts/2013/EECS-2013-173.html

October 23, 2013

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
23 OCT 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
FastLane: Agile Drop Notification for Datacenter Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The drive towards richer and more interactive web content places increasingly stringent requirements on
datacenter networks. The speed with which such networks respond to packet drops limits their ability to
meet highpercentile flow completion time SLOs. Indirect notifications to packet drops (e.g., duplicates in
an end-toend acknowledgment sequence) are an important limitation to the agility of response to packet
drops. We propose FastLane, a new in-network drop notification mechanism. FastLane enhances switches
to send highpriority per-flow drop notifications to sources, thus informing sources as quickly as possible.
Consequently sources can retransmit packets sooner and throttle transmission rates earlier. Sources can
also make better decisions given more precise information and the ability to differentiate between
out-of-order delivery and packet loss.We demonstrate, through simulation and implementation that
FastLane reduces 99.9th percentile completion times of short flows by up to 75%. These benefits come at
minimal cost?safeguards ensure that FastLane consume no more that 1% of bandwidth and 2.5% of
buffers.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

15

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2013, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This research is supported in part by NSF CISE Expeditions award CCF-
1139158 and DARPA XData Award FA8750-12-2-0331, and gifts from
Amazon Web Services, Google, SAP, Cisco, Clearstory Data, Cloudera,
Ericsson, Facebook, FitWave, General Electric, Hortonworks, Huawei,
Intel, Microsoft, NetApp, Oracle, Samsung, Splunk, VMware, WANdisco
and Yahoo!.

FastLane: Agile Drop Notification for Datacenter Networks

David Zats1, Anand Iyer1, Ganesh Ananthanarayanan1, Randy Katz1, Ion Stoica1, Amin Vahdat2

1University of California, Berkeley, 2 Google / University of California, San Diego

Abstract

The drive towards richer and more interactive web con-
tent places increasingly stringent requirements on data-
center networks. The speed with which such networks
respond to packet drops limits their ability to meet high-
percentile flow completion time SLOs. Indirect notifi-
cations to packet drops (e.g., duplicates in an end-to-
end acknowledgment sequence) are an important lim-
itation to the agility of response to packet drops. We
propose FastLane, a new in-network drop notification
mechanism. FastLane enhances switches to send high-
priority, per-flow drop notifications to sources, thus in-
forming sources as quickly as possible. Consequently,
sources can retransmit packets sooner and throttle trans-
mission rates earlier. Sources can also make better de-
cisions, given more precise information and the ability
to differentiate between out-of-order delivery and packet
loss. We demonstrate, through simulation and implemen-
tation, that FastLane reduces 99.9th percentile comple-
tion times of short flows by up to 75%. These benefits
come at minimal cost—safeguards ensure that FastLane
consume no more that 1% of bandwidth and 2.5% of
buffers.

1 Introduction
Creating rich web content involves aggregating outputs
from many short network flows, each of which contains
only a few KBs of data. Strict user-interactivity dead-
lines mean that networks are increasingly evaluated on
high percentile completion times of these short flows.
Achieving consistent flow completion times is increas-
ingly challenging given the trends in modern datacenters.
The burstiness of workloads continues to increase, while
deep buffered switches are becoming prohibitively ex-
pensive [8, 9]. Consequently, switch buffers can quickly
be overwhelmed leading to packet drops [8].

Existing approaches for reacting to packet drops are,
essentially, indirect. They rely on on duplicate acknowl-
edgements and timeouts which take a long, highly vari-
able time to arrive because of unpredictable queueing
and server delays. These delays can be far larger than the
transmission time of short flows, greatly inflating high-
percentile completion times [20]. Setting smaller time-
outs only reduces completion times to a point, at which
spurious retransmissions and server overheads become
prohibitive. Even with tight timeouts [8, 28], our mea-
surements show that relying on indirect indicators can

increase short flow completion times four-fold.
Recent solutions to deal with packet drops typically

leverage either end-to-end mechanisms with improved
window management or explicit rate control [8, 9, 19,
27, 29]. Often the former techniques are unable to re-
spond to congestion quickly enough, leading to further
packet drops. The latter techniques inflate the comple-
tion times of most datacenter flows, requiring multiple
RTTs for transmissions that could have completed in just
one [10, 12, 17].

In this paper, we argue for enlisting switches to di-
rectly transmit high-priority notifications to sources as
soon as drops occur. Such direct notifications are the
fastest way to inform sources of drops because switches
are first to know with certainty that the drop has occurred.
As a result, sources no longer wait for any of the indi-
rect mechanisms. Instead, they can respond quickly and
effectively by retransmitting the packet, thus improving
high-percentile completion times.

An earlier proposal to directly notify sources, (i.e.,
ICMP Source Quench [16]), failed to gain widespread
adoption in the wide area. We argue that this was due
to three fundamental limitations. First, switches would
send notifications in response to both drops and build-
ing congestion, without telling the source which event
occurred and which packet had triggered it [24]. Conse-
quently, transport protocols could not retransmit quickly.
Second, as notifications were not prioritized, they would
suffer delays, limiting the sources ability to respond ag-
ilely. Finally, there were no safeguards in place to en-
sure that notifications did not contribute to congestion
collapse [11].

Addressing the above limitations presents conflicting
challenges. Limiting resource consumption of notifica-
tions suggests putting minimal information in the notifi-
cations and making them simple to generate at switches.
On the other hand, low semantic content in the notifica-
tions limits the capabilities of sources to respond suffi-
ciently. In the absence of detailed information about the
event that occurred, sources react conservatively, waiting
until the event has been verified, else they risk exacerbat-
ing congestion.

We solve these challenges by presenting FastLane, a
lightweight drop notification mechanism. FastLane in-
cludes the transport header of dropped packets in noti-
fications, providing sources sufficient information to re-
spond quickly. It prioritizes the notifications, ensuring

1

timely arrival and installs analytically-determined buffer
and bandwidth caps to avoid overwhelming the network.
We show that FastLane is both practical and transport-
agnostic by describing how to efficiently generate notifi-
cations in the data plane and extending both TCP and the
recently proposed pFabric to leverage them [10].

In addition to making sources agile to packet drops,
notifications have another useful property. They enable
sources to distinguish between out-of-order delivery and
packet loss. This allows networks to perform per-packet
load balancing, effectively avoiding hotspots and their in-
herent delays, without triggering retransmissions based
on out-of-order delivery.

We evaluate FastLane in a number of scenarios, us-
ing both testbed experiments and simulations. Results
from our evaluation demonstrate that FastLane improves
the 99.9th percentile completion time of short flows by
up to 75% compared to TCP. FastLane also improves
short flow completion times by 50% compared to pFab-
ric. It achieves these improvements even when we cap
the bandwidth and buffers used by drop notifications to
as little as 1% and 2.5%, respectively.

The rest of this paper is organized as follows. In the
following section, we discuss the need for drop notifi-
cations. In Section 3, we describe the mechanisms em-
ployed by FastLane. The details of our simulation and
in-kernel implementation are described in Section 4. We
evaluate FastLane and report both implementation and
simulation results in Section 5. We contrast our approach
with prior work in Section 6 and conclude in Section 7.

2 The Case for Drop Notification

Datacenter networks are expected to meet strict perfor-
mance requirements. Hundreds of intra-datacenter flows
may be required to construct a single web-page [23]. The
worst-case performance is critically important as work-
flows (e.g. partition-aggregate) must either wait for the
last flow to arrive or degrade page quality [8].

Measurement studies from a variety of datacenters
have shown that most flows are short [12, 17]. As
seen from Microsoft’s production datacenters, latency-
sensitive flows are no exception, with most ranging from
2 - 20KB in length [8].

In this section, we begin by describing how directly
notifying sources of packet drops helps them improve
short flow completion times. Next, we investigate exist-
ing direct notification schemes, discussing why their de-
sign decisions dramatically limit their effectiveness. Af-
ter this investigation, we propose a series of principles
for direct notification, which we use in the next section
to design FastLane.

1.

2.

3.

Figure 1: In response to a packet drop (1), the switch sends a
notification directly to the source (2). Upon receiving the noti-
fication, the source resends the packet (3).

2.1 Notifying Drops

Datacenter networks are susceptible to packet drops.
Workflows, such as partition-aggregate, routinely gener-
ate traffic bursts by requiring many workers to simulta-
neously respond to the same destination. As datacenter
switches are shallow-buffered, these workflows can eas-
ily overwhelm them, resulting in packet drops [8]. Fur-
thermore, this problem is likely to become worse as web-
sites employ more workers to create richer web pages,
while meeting the same strict deadlines.

Unfortunately, short flows are particularly sensitive to
drops. If a flow consists of just a few packets, there is
a significant chance that all of the packets in the win-
dow will be dropped, resulting in a timeout. Even if just
one of the flow’s packets is dropped, the flow may not
be sending sufficient data to generate three duplicate ac-
knowledgements and will have no option but to timeout.

Timeouts are purposely set to large values to in-
crease the likelihood that the missing packet has actu-
ally been dropped. Sources must set timeouts sufficiently
high such that queueing and unpredictable server delays
do not trigger spurious retransmissions. While reducing
buffer sizes can mitigate the former, this is often accom-
panied by a corresponding reduction in throughput. The
latter is far more challenging to control. Recent work has
shown that even highly-optimized servers can take hun-
dreds of microseconds to respond to requests in the pres-
ence of bursts [20]. Given the low per-request processing
time in this study, TCP acknowledgment generation is
likely to behave similarly. These latencies are far greater
than the unloaded RTTs of modern datacenters, which
are typically in the 10’s of µs [10].

In Figure 1, we depict the benefits of directly notify-
ing sources of drops. When the congested switch drops
a packet, it sends a high-priority notification back to the
source, informing it precisely which packet was dropped,
as quickly as possible. In response to this notification, the
source resends the dropped packet, minimizing recovery
time.

It may seem as though most of the benefits of di-

2

0	

0.5	

1	

1.5	

2	 4	 8	 16	 32	 Co
m
pl
e'

on
	 T
im

e	
(m

s)
	

Flow	 Size	 (KB)	

TCP	 Quench	 Idealized	

Figure 2: 99.9th percentile flow completion times.

rect notification are obtained when the packet is dropped
early in the network. However, as discussed earlier, time-
outs are typically set conservatively and server delays
are highly unpredictable. TCP Offload Engines (TOE),
which offload acknowledgement generation to the NIC
do exist. However, they currently support just a hand-
ful of concurrent, long-lived connections and are hence
poorly suited for the many short flows in datacenter en-
vironments [6].

2.2 Existing Alternatives

ICMP Source Quench and Quantized Congestion Noti-
fication (802.1Qau) are two proposals that rely on di-
rect notification [1, 16]. To the best of our knowledge,
both have failed to gain widespread adoption and Source
Quench has since been deprecated. Here we investigate
why these proposals are ineffective at reducing high per-
centile completion times in datacenter environments. We
use the insights gained from our investigation to propose
a series of design principles for direct notification.

2.2.1 ICMP Source Quench

ICMP source quench was a protocol switches used to
signal congestion to the source. A switch experiencing
congestion would generate and send ICMP messages to
sources requesting that they reduce their transmission
rates. The quench message contained the first 8 bytes
of the offending packet’s transport header so the source
could determine which flow to throttle.

The conditions under which source quench messages
were sent were poorly defined and the message itself did
not contain any information as to what triggered it. The
advantage of this approach is that it enabled switches to
generate source quench messages as frequently as their
control plane could support. The specification did not
have to concern itself with the generation rates of differ-
ent switch hardware. The disadvantage of this approach
was that sources did not know whether the notification
was sent in response to a packet drop or building conges-
tion. Nor did they know whether notifications would be
sent consistently in response to each. As a result, when
Linux supported Source Quench (15 years ago), it re-
sponded to those messages in the same way as it does

to ECN [26]. It reduces the congestion window but it
waited for 3 duplicate acknowledgements or a timeout
to retransmit the packet.

Source quench messages suffered from two other
problems. As they had the same priority as the offend-
ing data packet, quench messages often took a long time
to arrive at the source diminishing potential gains [11].
At the same time, there were no safeguards in place to
ensure that source quench messages did not consume too
many resources in the presence of extreme congestion.

To quantify the impact of these design decisions, we
evaluated Source Quench using the workload in Sec-
tion 5. In this workload, we have bursts of short flows (up
to 32KB in length) and long flows (1 MB in length). Fig-
ure 2 shows the 99.9th percentile completion times for
the short flows. We see that under this workload, Source
Quench does not perform significantly better than TCP.
More importantly, we see that an idealized drop notifica-
tion mechanism that does not have limitations of Source
Quench could reduce high-percentile completion times
by 75%.

2.2.2 Quantized Congestion Notification

Quantized Congestion Notification (QCN) is a direct
notification scheme proposed as part of the datacenter
bridging protocols [1]. With QCN, switches send noti-
fications directly to sources, informing them the extent
of the congestion being experienced. Upon receiving no-
tifications, sources reduce the rate of transmission, based
on the amount of congestion reported. Sources then pe-
riodically increase their transmission rates until another
notification is received.

The key limitation of QCN stems from the fact that
rate-limiting is being performed in the NIC. This has the
following problems: (i) transport is unaware of conges-
tion being experienced and cannot make more informed
decisions (e.g. MPTCP selecting another path [25]), (ii)
QCN cannot discern whether acknowledgments are be-
ing received and must instead rely on a combination of
timers and bytes transmitted to determine when to raise
the transmission window, and (iii) in practice NICs have
an insufficient number of rate limiters, so flows may be
grouped together, causing head-of-line blocking [8]. The
lack of coordination between the rate limiter and trans-
port has led to significant drops and TCP timeouts. QCN
can degrade TCP performance by so much that prior
work recommends enabling QCN only in heterogeneous
environments where it is beneficial to control unrespon-
sive flows (e.g. UDP) [14].

2.3 Direct Notification Design Principles

Based on the lessons learned from evaluating Source
Quench and QCN, we have distilled a set of design prin-
ciples for direct notifications:

3

• Notifications (and the triggers that generate them)
must be sufficiently specified so transport knows
whether a packet was dropped, and if so, which
one it was. This enables transports to respond ef-
fectively.

• Notifications must be created in the data plane so
that many of them can be generated within a short
duration without overwhelming the control plane.

• Notifications must be transmitted with high priority
to ensure timely arrival, but safeguards must ensure
they do not aggravate congestion events.

In the next section, we present the design of our so-
lution, FastLane, and show how it achieves all of these
goals.

3 Design of FastLane
In this section, we begin with an overview of FastLane.
Next, we delve into the details of FastLane’s notifica-
tions. We show that they provide pinpoint information
to the source, consume very few network resources, and
can be generated with low latency. Later, we describe the
safeguards FastLane employs to ensure that notifications
do not consume excessive resources during periods of ex-
treme congestion. We conclude this section by discussing
the transport modifications required to support FastLane.

3.1 Overview

When multiple sources share a path, the queues of a
switch on it may start to fill. Initially, the switch has suffi-
cient resources to buffer arriving packets. But eventually,
it runs out of capacity and must discard some packets.
This is where FastLane takes action. For every dropped
packet, it sends a notification back to the source, inform-
ing it which packet was lost.

To provide the source sufficient information to re-
spond effectively, the notification must contain at least (i)
the transport header and length of the dropped packet and
(ii) a flag that differentiates it from other packets. The
notification is sent to the source with the highest priority,
informing it of the drop as quickly as possible. Upon re-
ceiving this notification, the source determines precisely
what data was dropped and retransmits accordingly.

During periods of congestion, it may be best to post-
pone retransmitting the dropped packet. Section 3.4 de-
scribes how transports decide when to retransmit. To pro-
tect against extreme congestion, FastLane also employs
explicit safeguards that cap the bandwidth and buffers
used by notifications (Section 3.3).

3.2 Generating Notifications

Notifications must provide sources sufficient information
to retransmit the dropped packet. To achieve this goal,
they should include (i) a flag / field differentiating them

IP	
SRC	

IP	
DST	

TOS	
(0x0)	

Transport	
Header	 Payload	

IP	
SRC	

IP	
DST	

TOS	
(0x4)	

Transport	
Header	

 |= 0x04

Figure 3: Transforming packets into notifications.

from other packets, (ii) the source and destination IP
addresses and ports denoting the appropriate flow, (iii)
the sequence number and packet length to denote which
bytes were lost, and (iv) the acknowledgement number
and control bits so the source can determine the packet
type (i.e., SYN, ACK, FIN).

A naive approach to generating notifications would in-
volve the control plane’s general-purpose CPU. But, the
control plane could become overwhelmed when traffic
bursts lead to drops, generating many notifications within
a short duration. This is not an effective approach.

Instead, we developed a series of simple packet trans-
formations that can quickly be performed in the data
plane. The transformations to create a FastLane notifi-
cation are depicted in Figure 3. We start with the packet
to be dropped and then (i) flip the source and destination
IP address, (ii) set the IP TOS field, and (iii) truncate the
packet, removing all data past the TCP header. We then
forward the packet on to the input port from which it ar-
rived. While we expect that this approach would be per-
formed in hardware, we note that transforming a packet
only takes 12 lines of Click code [21].

Our transformations need to provide one more piece of
information - the length of the original packet. We have
two options for accomplishing this (i) we can avoid mod-
ifying the total length field in the IP header, keeping it the
same as the original packet, or (ii) we can create a TCP
option that contains the length and is not truncated. Fast-
Lane implements the former approach in this paper.

This approach relies solely on simple packet manipu-
lation. Prior work has demonstrated that such operations
can be performed very quickly in the data plane [13].
Additionally, sending the packet back on the input port
(while not strictly necessary), avoids the need to perform
an additional IP lookup. Lastly, as the IP header check-
sum is a 16 bit one’s complement checksum, flipping
the source and destination IP addresses does not change
its value. We can simply update it incrementally for the
changes in the TOS field.

3.3 Controlling Resource Consumption

Notifications sent in response to drops can contribute to
congestion in the reverse path. They take bandwidth and
buffers away from regular packets, exacerbating conges-
tion events. As FastLane prioritizes notifications so they

4

arrive as quickly as possible, safeguards must be in place
to ensure that they do not harm network performance.

Our safeguards take the form of bandwidth and buffer
caps. To understand how to set these caps, we must an-
alyze both average and short-term packet loss behavior
and the resulting increase in notification load. A high-
level goal when setting these caps is for notifications to
be dropped when the network is experiencing such ex-
treme congestion, that the best option is for sources to
timeout.

3.3.1 Controlling Bandwidth

To understand how much bandwidth should be provided
to drop notifications, we analyze the impact that average
packet drop behavior has on notification load. Through
this approach, we can bound worst-case bandwidth use.

Given a drop probability, p, we calculate the fraction
of the load used by notifications as:

ln =
psn

sr + psn
, (1)

where sr is the average size of a regular (non-notification)
packet and sn is the size of the notification. To obtain
a quantitative result, we assume that packets are 800
B long and notifications are 64 B long. We choose the
packet size based on reports from production datacen-
ters [12]. Based on these assumptions, we see that just
1% of the load would be used by notifications if 12%
of the packets were being dropped. As a 12% drop rate
would cause TCP’s throughput to plummet, we cap the
links of every switch, clocking out notifications at a rate
limited to 1% of the capacity of the link. We ensure that
our approach is work conserving – both FastLane’s noti-
fications and regular traffic use each other’s spare capac-
ity when available.

When FastLane’s notifications are generated faster
than they are clocked out, the buffers allocated to them
start to fill. Once these buffers are exhausted, notifica-
tions are dropped. We argue that at this point, the net-
work is so congested that letting the drop occur and trig-
gering a timeout is the best course of action for returning
the network to a stable state. We describe how to size the
buffers used by notifications next.

3.3.2 Controlling Buffers

Traffic bursts may result in many packets being dropped
over short timescales. As a result, many drop notifica-
tions may be created and buffered at the switch. We need
to determine how much buffering to set aside for drop
notifications, so we can leave as much as possible for
regular transmissions. To do this, we must consider a va-
riety of factors, including burst size and how many bursts
can arrive simultaneously at a switch.

We begin by looking at a single burst. In the worst
case, there may be no buffering available to absorb the

0	
0.005	
0.01	
0.015	
0.02	
0.025	
0.03	

1	 7	 13	 19	 25	 31	 37	 43	

Fr
ac
%o

n	
of
	 B
uff

er
s	

Number	 of	 Ports	

Figure 4: The fraction of a switch’s buffers used by notifications
when ports receive bursts simultaneously.

packets of the burst, which means that each packet will
generate a notification. Then the number of bytes neces-
sary to store the resulting notifications is approximated
by the following equation:

bsize ×
nsize

dsize
× (1− 1

pin
), (2)

where bsize is the size of the burst, nsize is the size of the
notification, dsize is the size of the average data packet
and pin is the number of ports simultaneously sending to
the same destination. The first part of this equation calcu-
lates how many notifications (in bytes) would be created
if all of the packets in the burst were dropped. The second
part of the equation accounts for the fact that the port re-
ceiving the burst is simultaneously transmitting packets.
This means that bsize / pin packets will sent by the output
port while receiving the burst. They will not be dropped
and notifications for them will not be generated.

Multiple bursts may arrive at the same switch simulta-
neously. For each one we will need to store the number of
bytes specified by Equation 2. However, the same input
port cannot simultaneously contribute to multiple bursts.
When combined with Equation 2, this means that assign-
ing an input port to a new burst reduces the number of
notifications generated by the previous one.

To provide some intuition for the implications of this
property, we plot the fraction of buffers consumed when
varying numbers of a switch’s port simultaneously re-
ceive bursts. For this calculation we assume (i) burst sizes
of 160KB, doubling the typical burst size reported by
prior work [8] and (ii) a 48-port switch with 128KB per
port as seen in production TOR switches [2].

In Figure 4, we depict the fraction of the switch’s
buffers consumed when varying numbers of its ports re-
ceive simultaneous bursts. When calculating these val-
ues, we assume that all the input ports are used and that
they are spread evenly across the bursts.

From this figure, we observe that increasing the num-
ber of ports that are simultaneously receiving bursts be-
yond a certain point decreases the number of drops and
hence the number of notifications generated. To under-
stand why this happens, we look at Equation 2. Note that
as the number of simultaneous burst increases, the num-

5

seq	 #	
retries	 #	

seq	 #	
retries	 #	

seq	 #	
retries	 #	

seq	 #	
retries	 #	

seq	 #	
retries	 #	 Create new table entry

retries++

New notification

Old notification
Update table entry

maxsim 1/max(retries)

Figure 5: Modifications to TCP for handling notifications of
dropped data packets.

ber of ports contributing to each goes to 1, driving the
number of bytes used by notifications to zero.

Based on this analysis, we see that allocating 2.5% of
switch buffers should be sufficient to support drop no-
tifications. In our evaluation we use a cap of 2.5% ×
128KB = 3.2KB. However, we note that FastLane is still
useful even when its buffer allocation is exhausted and
some notifications are dropped. Environments with strict
deadlines will see a larger fraction of flows will complete
on time [19,29]. Scenarios with hundreds of sources par-
ticipating in Incast will complete faster because there
will be fewer rounds of timeouts and synchronized pull-
backs.

3.4 Transport Modifications

Now that we have described how to generate notifica-
tions safely and efficiently, we turn our attention to the
transport modifications required to make use of them.
Here, we discuss how TCP uses notifications to im-
prove high-percentile flow completion times. Later we
will present our proposed modifications to pFabric.

3.4.1 TCP

TCP uses notifications to perform retransmission and
rate throttling as well as to support multiple paths. We
now describe the details of each in turn.

Retransmission and Rate Throttling: Our modifica-
tions to TCP perform retransmissions when receiving
notifications for both data and control (i.e., SYN, FIN,
ACK) packets. Control packets that need to be resent
are transmitted immediately as they are small and hence
should not significantly contribute to congestion1. Re-
transmitting data packets is more challenging as we
must strike a balance between the desire to retrans-
mit as quickly as possible and the need to avoid ping-
pong packet retransmissions. Ping-pong packet retrans-
missions occur when a notification is generated and a
packet is retransmitted, only to be dropped again because

1Cases where control packet retransmission significantly adds to
congestion are extreme. In this situation, we rely on the bandwidth
and buffer caps to drop notifications, forcing timeouts and returning
the network to a stable state.

of persistent congestion. This process can repeat over and
over, wasting precious network resources. We must walk
the fine line between retransmitting as soon as possible
and avoiding these unnecessary drops.

Ideally, when the notification is transmitted to the
source, the source would wait just enough time such that
the retransmission would arrive at the destination. This
is very difficult to achieve given that we do not know
the number of flows simultaneously contributing to that
switch and are unable to accurately predict server de-
lays. Instead, we take a simpler approach; we measure
the amount of ping-pong behavior the flow is experienc-
ing and throttle the number of simultaneous retransmis-
sions accordingly.

As shown in Figure 5, when receiving a notification
for a data packet, the source stores an entry in a table
specifying the data that has been lost as well as the num-
ber of times it has attempted to retransmit the packet. The
source traverses this table in order of sequence number. It
resends as many data packets as it can, subject to the con-
dition that the max number of simultaneous retransmits
not rise above maxsim. While recovering from losses, the
source sends no new packets.

The goal when setting maxsim is to back off quickly
in the presence of persistent congestion. We initially set
its value to half the congestion window and have it mul-
tiplicatively decrease as the number of times the source
attempts to retransmit the same packet increases. When
all of the packets have been successfully retransmitted,
we clear maxsim and set the congestion window to be half
the value it was upon entering recovery.

Two edge cases arise with this approach. First, our al-
gorithm may stall if it retransmits packets with higher se-
quence numbers first because TCP’s acknowledgements
are cumulative. To address this issue, we resend the
packet immediately when we receive a notification for
the smallest sequence number. Second, in extreme peri-
ods of congestion, TCP may timeout and begin resend-
ing. At this point, notifications may be received that are
no longer relevant. We address this problem by including
a TCP option in all packets that specifies the number of
times the flow has experienced a timeout. We ensure that
the TCP option is not truncated when creating the no-
tification and check received notifications to see if they
should be processed.

Supporting Multiple Paths: The cumulative nature of
acknowledgments makes it challenging to extend TCP to
effectively use multiple paths. Cumulative acknowledg-
ments do not specify the number of packets that have
arrived out of order. This number is likely to be high in
multipath environments (unless switches restrict them-
selves to flow hashing). Packets received out of order
have left the system and are no longer contributing to

6

congestion. Thus this information would allow TCP to
safely inflate its congestion window and hence achieve
faster completion times.

To address this problem, we introduce a new TCP
option that contains the number of out-of-order bytes
received past the cumulative acknowledgment. When a
source receives an acknowledgment containing this op-
tion, it accordingly inflates the congestion window. This
allows more packets to be transmitted and reduces de-
pendence on the slowest path (i.e., the one whose data
packet was received late).

How much the congestion window should be in-
creased by depends on whether the acknowledgment is a
duplicate. If the acknowledgement is new, then the win-
dow should be inflated by number of out-of-order bytes
stored in the TCP option. If the acknowledgment is a du-
plicate, then the window should be inflated by the max-
imum of the new out-of-order value and the current in-
flation value. This ensures correct operation even when
acknowledgments themselves are received out-of-order.

3.4.2 pFabric

pFabric is a recent proposal that combines small switch
buffers, fine-grained prioritization, and small RTOs to
improve high percentile flow completion times [10]. To
leverage the multiple paths available in the datacenter,
pFabric avoids relying on in-order delivery. Instead it
uses SACKs to determine when packets are lost and
timeouts to determine when to retransmit them.

When a FastLane notification arrives, we have pFab-
ric store it in a table, just like TCP. But, the response to
notifications is based on the congestion control algorithm
of pFabric. Before resending any data packets, the source
sends a probe to the destination. The probe packet is used
as an efficient way to ensure that congestion has passed.
Once the probe is acknowledged, the source begins re-
sending up to maxsim packets. In this case, maxsim starts
at 1 whenever a notification arrives, and increases expo-
nentially with every successful retransmission, in effect
simulating slow start.

From these examples, we see how different transport
protocols can make use of drop notifications in different
ways. In the next section, we describe how we setup our
simulation and implementation environment.

4 Evaluation Setup

We evaluate FastLane through a Click-based [21] imple-
mentation to demonstrate the feasibility of our approach
and through an NS3-based [5] simulation to investigate
how its performance scales. In this section, we describe
both our simulation and implementation. In the follow-
ing section, we report our results.

4.1 Implementation

To implement FastLane, we modified both Click to gen-
erate notifications in response to drops as well as the
Linux kernel to process them. Here we describe the mod-
ifications required for each.

4.1.1 Click Switches

We implemented the functionality required by FastLane
by creating two Click elements. The first stores the input
port of each arriving packet. The second takes as input all
packets that are being dropped and performs the transfor-
mations as described in Section 3.

One difficulty with Click was supporting fine-grained
rate-limiting. To ensure that notifications do not consume
too much bandwidth, we needed to clock them out every
6µs. Achieving this necessitated that we avoid Click’s
timing system and instead rely on the cycle counter. Ev-
ery time Click checks to see if there is a packet available
to transmit, we check if enough cycles have passed since
the last time the notification was transmitted. If so, then
we allow the notification to be sent. Otherwise, Click
transmits a data packet.

The other difficulty was ensuring that the buffers allo-
cated in Click represented the amount of buffering avail-
able per port. After a packet is “sent” by a Click ele-
ment, it is actually enqueued in the driver’s ring buffer.
It is later DMAed to the NIC, where it is stored in an-
other buffer until it is placed on the wire. In effect, this
means that a port could have far more buffering than in-
dicated within Click. To address this issue, we slightly
rate-limited all of our links by 2% to underflow these
buffers. In total, all of our modifications to Click con-
sumed approximately 1700 lines of code.

4.1.2 Linux Servers

We modified Linux 3.2 to support FastLane. Our modifi-
cations for processing arriving notifications begin with
tcp v4 rcv(). We check to see if the arriving packet is
a notification when obtaining the socket context. Recall
that as the TCP header was copied from the dropped
packet (Section 3), this requirers flipping the source and
destination ports.

As normally done, we call tcp v4 do rcv() with the
socket. But, at the beginning of this function, we once
again check to see if the packet is a notification. If so,
we perform the custom processing required. We check to
see if the notification is for a data or control packet. If the
notification is for a control packet and it needs to be re-
transmitted, we do so immediately. For data packets, we
use the kernel’s linked list API to store the entry.

After storing the entry, we check to see whether we can
retransmit the packet based on the rules described in Sec-
tion 3. If so, we walk through the socket’s �write queue
to find the packet and call tcp transmit skb() to send

7

it out. We chose not to use the retransmission routine
tcp retransmit skb() to avoid the kernel’s bookkeeping.
Finally, we included functionality in tcp ack to both de-
termine when retransmissions have been successful and
to attempt new ones.

In addition to processing notifications, we also modi-
fied Linux to support out-of-order delivery by no longer
going into fast recovery when receiving three duplicate
acknowledgements. In total, we added approximately
900 lines of code to the Linux kernel.

4.2 Simulation

Generally, our simulation of TCP has the same function-
ality as our implementation. Here discuss the salient dif-
ferences. After, we will describe our simulation of pFab-
ric.

4.2.1 TCP

In addition to including the FastLane processing logic
described in the implementation, our simulation also
models server processing delays. Modeling server pro-
cessing delays is challenging as it depends on both the
hardware used and the load on the system. Based on [20],
our simulation assumes up to 16 packets may be pro-
cessed at once and that processing each packet takes 5µs.
While modern servers may have more cores, lock con-
tention, software processing requirements, and unpre-
dictable software behavior will likely limit their ability
to achieve greater parallelism.

4.2.2 pFabric

When simulating pFabric [10], we use the same model of
server delay as described earlier. We also make two mod-
ifications to the proposed approach in the paper. First, to
avoid priority inversion in request-response workloads,
we prioritize each flow based on the total number of
bytes in the response instead of the number of bytes left
to transmit. As described in the paper, such a prioritiza-
tion scheme has near-ideal performance. Second, both in
pFabric and in FastLane’s extension of it, we use special
probe packets that do not contain any data. This enables
the destination’s NIC to quickly echo them back to the
source, avoiding unpredictable server delays.

5 Evaluation
We now present our evaluation of FastLane. Our goal is
to show the performance of our proposal in a wide variety
of settings that encompass the common traffic character-
istics present in today’s datacenters.

We evaluate both the performance of TCP-NewReno
with CoDel early marking [15, 22] and pFabric [10].
TCP-NewReno is a well-established, well-tested simula-
tion model and pFabric is a recently-proposed multipath
protocol focused on improving short-flow performance.
pFabric has been shown to outperform both DCTCP and

PDQ [8, 19]. When Source Quench assists TCP, quench
message generation is triggered by CoDel’s marking al-
gorithm. When FastLane assists these protocols, we in-
stitute bandwidth and buffer caps on notifications. Band-
width is capped to 1% while buffers are capped to 2.5%
of 128KB = 3.2KB, based on our analysis in Section 3.

When evaluating TCP and pFabric in simulation, we
set the timeouts to 1ms and 250µs, respectively. 1ms
timeouts for TCP are considered aggressive based on
prior work [8]. Setting 250µs timeouts for pFabric bal-
ances pFabric’s desire for small timeouts with the prac-
tical limitations of timeout generation and unpredictable
server delays [20,28]. In our implementation of TCP, we
use traditional datacenter timeout values of 10ms [8].

We report the results of our simulated 128-server Fat-
Tree topology. Our simulated topology uses 10 Gig links
with 128KB per port when running TCP and 64KB per
port when running pFabric. 128KB per port is the amount
of buffering typically available in TOR switches [2] and
64KB is based on pFabric’s buffer calculation. To assess
the practicality of our approach, we also report the results
from our 16-server FatTree topology running on Emu-
lab [4]. As described earlier, we use Click to provide the
switch functionality [21]. All of the links in the topol-
ogy are 1 Gig. Given the reduced link speeds, we scale
buffers to 64KB per port. Both topologies are full bisec-
tion bandwidth, demonstrating the advantages of Fast-
Lane when most packets are dropped at the last hop. We
use flow hashing to spread the load across these topolo-
gies when in-order delivery is required (i.e., for TCP) and
use packet scatter otherwise.

All experiments use request-response workflows. Re-
quests are initiated by a 10 byte packet to the server.
We classify requests into two categories: short and long.
Short requests result in a response that can be a flow of
size 2, 4, 8, 16, or 32KB, with equal probability. This
spans the range of small, latency-sensitive flows typi-
cally observed in datacenters [8]. As these requests are
typically encountered in partition-aggregate workflows,
our sources initiate them in parallel, such that the total
response size is 32 KB, 64KB, 96KB, 128KB, or 160KB
with equal probability. Note that 160KB / 2KB = 80
senders, twice the number of workers typically sending
to the same aggregator [8].

Long requests generate a response that is 1MB in
length. Since most servers are typically engaged in just
one or two long flows at a time [8], our long requests
follow an all-to-all traffic pattern. Throughout our evalu-
ation, we refer to both short and long requests based on
the flow size of the response.

In this section, we begin by presenting our simula-
tion results. Once the high-level benefits have been estab-
lished, we use the simulator to dig more deeply, explor-
ing various properties of FastLane such as how efficient it

8

0	
20	
40	
60	
80	
100	

2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	

Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	

20	 40	 60	 80	

Re
du

c&
on

	 T
CP

's
	 C
om

pl
e&

on
	

Ti
m
e	
(%

)	

U&liza&on	 (%)	

FL-‐FH	 FL-‐PS	

Figure 6: Reduction in TCP’s 99.9th percentile flow completion
time when assisted by FastLane. For FastLane, we show the
results with both flow hashing (FL-FH) and packet scatter (FL-
PS).

0	
20	
40	
60	
80	
100	

2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	

Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	

20	 40	 60	 80	

Re
du

c&
on

	 in
	 P
Fa
br
ic
's
	

Co
m
pl
e&

on
	 	

Ti
m
e	
(%

)	

U&liza&on	 (%)	

FL	

Figure 7: Reduction in pFabric’s 99.9th percentile flow com-
pletion time when assisted by FastLane (FL).

is in terms of bandwidth and buffer consumption and its
sensitivity to different bandwidth and buffer caps. Next,
we report our implementation results, which demonstrate
the feasibility of using FastLane. We conclude this sec-
tion by summarizing the key takeaways.

5.1 Simulation Results

Here we evaluate how FastLane improves both TCP’s
and pFabric’s performance. We first report our results
across a range of utilizations for a workload where 10%
of the load is caused by short request-response work-
flows and 90% of the load is caused by long workflows.
This is the distribution typically seen in production dat-
acenters [12]. Then we keep the utilization constant at
60% and vary the fraction of the load caused by the short
request-response workflows. After establishing the high-
level benefits of FastLane, we evaluate its sensitivity to
(i) bandwidth and buffer caps, (ii) smaller buffer sizes,
and (iii) varying amounts of server latency.

5.1.1 Varying Utilization

In Figure 6, we report the reduction in TCP’s 99.9th per-
centile flow completion time across a range of utiliza-
tions. In most cases, Source Quench does not benefit
TCP, so we do not report its results. However, with Fast-
Lane, performance improves dramatically, irrespective
of whether flow hashing is used. At 20% utilization, 2KB
flow completion times reduce from 1.2ms to 0.3ms, a
75% reduction, when using FastLane with packet scatter
(FL-PS). As utilization increases, the percentage reduc-

0	
20	
40	
60	
80	
100	

2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	

Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	

10	 20	 30	 40	 50	

Re
du

c&
on

	 T
CP

's
	 C
om

pl
e&

on
	

Ti
m
e	
(%

)	

Frac&on	 of	 Short	 Flows	 (%)	

FL-‐FH	 FL-‐PS	

Figure 8: Reduction in TCP’s 99.9th percentile flow completion
time for a different fractions of short flows.

0	
20	
40	
60	
80	
100	

2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	

Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	

10	 20	 30	 40	 50	

Re
du

c&
on

	 in
	 P
Fa
br
ic
's
	

Co
m
pl
e&

on
	 	

Ti
m
e	
(%

)	

Frac&on	 of	 Short	 Flows	 (%)	

FL	

Figure 9: Reduction in pFabric’s 99.9th percentile flow com-
pletion time for different fractions of short flows.

tion decreases because higher loads decrease the amount
of time that can be saved by avoiding a timeout. How-
ever, at 80% utilization, FL-PS helps a 2KB flow com-
plete in 0.9ms as opposed to 1.6ms, a reduction of 44%.

Interestingly, we often see greater improvement in
short flow completion times when FastLane is used with
flow hashing as compared to packet scatter. As long flows
can capture more resources with packet scatter, they con-
tend more with short flows. We see evidence of this by
looking at long flow completion times. With packet scat-
ter, average long flow completion times reduce up to
24%, whereas with flow hashing they remain within a
few percent of unaided TCP.

As shown in Figure 7, FastLane also helps pFabric’s
99.9th percentile flow completion times. At 40% utiliza-
tion, FastLane reduces completion times from 0.6ms to
0.3ms, a 50% reduction. As both pFabric and FastLane’s
extension to it use packet scatter, their average long flow
completion times stay within 5% of each other, with Fast-
Lane often performing better.

5.1.2 Varying Fraction

While only 10% of the load is typically caused by short
flows, we wanted to evaluate FastLane in a wider range
of environments. In Figure 8, we show how effective
FastLane is when short flows represent different fractions
of the total load. In all cases, the total load is held con-
stant at 60%. Even when 50% of the load is due to short
flows, FastLane provides significant benefit to TCP (e.g.
FL-PS reduces the 99.9th percentile completion times of
both 2 and 4KB flows by over 55%). As shown in Figure
9, FastLane continues to provide significant benefits to

9

0	

0.5	

1	

1.5	

2	

2.5	

0.25	 0.5	 0.75	 1	 1.25	 1.5	 1.75	 2	 Co
m
pl
e'

on
	 T
im

e	
(N
or
m
al
iz
ed

)	

Cap	 Scaling	

2KB	 4KB	 8KB	 16KB	 32KB	

Figure 10: FastLane’s sensitivity to the bandwidth and buffer
caps when aiding TCP.

0	

0.5	

1	

1.5	

2	

2.5	

0.25	 0.5	 0.75	 1	 1.25	 1.5	 1.75	 2	 Co
m
pl
e'

on
	 T
im

e	
	 (N

or
m
al
iz
ed

)	

Cap	 Scaling	

2KB	 4KB	 8KB	 16KB	 32KB	

Figure 11: FastLane’s sensitivity to the bandwidth and buffer
caps when aiding pFabric.

pFabric as well.
With respect to long flows, the behavior of this exper-

iment is very similar to the previous one for TCP. For
pFabric, in the extreme case that 50% of the load is due
to short flows, average long flow completion times do in-
flate by a modest 10%. We argue that this is a worthwhile
tradeoff to make as FastLane decreases short flow com-
pletion times by up to 44% in this scenario.

5.1.3 Sensitivity Analysis

To perform our sensitivity analysis, we use the workload
with 60% total load, where half is due to short flows. This
workload has the greatest number of bursts and should
hence stress our system the most. We evaluate how sen-
sitive FastLane is to different buffer caps, smaller buffers,
and varying server latency.

Sensitivity to Caps:
Here we explore how sensitive FastLane is to the 1%
bandwidth and 2.5% buffer caps that we use through-
out the evaluation. We simultaneously scale the band-
width and buffer caps by the same factor (e.g., a scal-
ing of 0.5 reduces the bandwidth and buffers available to
notifications by half). Normally, FastLane’s notifications
may use extra bandwidth beyond that specified by the
cap when the link is idle (i.e., they are work conserving).
To more accurately understand the effect of the cap, we
prohibit notifications from using extra resources in this
experiment.

In Figures 10 and 11, we depict FastLane’s sensitiv-
ity to the cap when it is assisting TCP and pFabric,
respectively. These figures show the 99.9th percentile

0.5	

1.5	

2.5	

3.5	

4.5	

32	 64	 96	 128	

N
or
m
al
iz
ed

	 C
om

pl
ei
to
n	

	 T
im

e	

Buffer	 Size	 (KB)	

2KB	 (TCP)	 4KB	 (TCP)	 8KB	 (TCP)	 16KB	 (TCP)	 32KB	 (TCP)	

2KB	 (FL)	 4KB	 (FL)	 8KB	 (FL)	 16KB	 (FL)	 32KB	 (FL)	

Figure 12: 99.9th percentile completion time of TCP with and
without FastLane for varying buffer sizes.

0.5	

1	

1.5	

2	

2.5	

16	 32	 48	 64	

N
or
m
al
iz
ed

	 C
om

pl
ei
to
n	

	 T
im

e	

Buffer	 Size	 (KB)	

2KB	 (pF)	 4KB	 (pF)	 8KB	 (pF)	 16KB	 (pF)	 32KB	 (pF)	

2KB	 (FL)	 4KB	 (FL)	 8KB	 (FL)	 16KB	 (FL)	 32KB	 (FL)	

Figure 13: 99.9th percentile completion time of pFabric with
and without FastLane for varying buffer sizes.

completion time for different flow sizes, normalized by
the completion times when no scaling is used (i.e., cap
scaling = 1). The characteristics of FastLane with TCP
and FastLane with pFabric are quite different. Both do
not see a performance hit until we scale the bandwidth
and buffers to 0.5. However, FastLane’s performance de-
grades more gradually when assisting pFabric because
pFabric’s fine-grained timeouts reduce the performance
impact of packet drops. Based on these results, we see
that our current bandwidth and buffer caps balance the
need to be robust to extreme congestion environments
with the desire to consume fewer resources.

Small Buffer Performance:
Here we evaluate how FastLane performs with smaller
buffer sizes. We start with the default TCP and pFab-
ric buffers of 128KB and 64KB, respectively, and reduce
them to see the performance impact. We keep the buffer
cap constant at 3.2KB throughout this experiment.

In Figure 12, we report the results for FastLane when
assisting TCP. The numbers for each flow are normalized
by the 99.9th percentile completion time that would oc-
cur at 128KB (each protocol and flow is normalized sep-
arately). We see that with FastLane, TCP’s 99.9th per-
centile flow completion times do not degrade as we re-
duce buffer sizes. Without FastLane, TCP’s performance
degrades rapidly and severely. However, we note that
FastLane is not immune to the impact of buffer reduction.
Its average flow completion times do increase as buffer
sizes decrease. In particular, average long flow comple-
tion times increase by 38% from 3.9ms to 5.4 ms as we

10

0	
20	
40	
60	
80	
100	

2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	

Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	

16	 32	 48	 64	 Re
du

c&
on

	 in
	 C
om

pl
e&

on
	 T
im

e	

Server	 Parallelism	

TCP-‐FL	 pFabric-‐FL	

Figure 14: 99.9th percentile reduction in flow completion time
with varying server parallelism.

go from 128KB to 32KB.
Figure 13 shows the results for the same experiment

performed with pFabric. FastLane is not able to prevent
the 99.9th percentile completion times of 16 and 32KB
flows from increasing. Average long flow completion
times suffer as well, increasing by 72% with FastLane
and 88% with unaided pFabric as we reduce buffers from
64KB to 16KB.

We highlight a few important points. First, pFabric al-
ready tries to use the minimum buffering possible. Sec-
ond as these numbers are normalized to what each flow
would achieve in Figure 9, FastLane outperforms pFab-
ric even in situations where they have same normalized
value. Thus, FastLane improves pFabric’s short flow per-
formance at all of these points.

These results show us that FastLane improves TCP’s
ability to use small buffers and does not harm pFabric’s
ability to do the same. The ability to degrade gracefully
in the presence of small buffers is important. Buffering
typically consumes 30% of the space and power of a
switch ASIC, limiting the number of ports a single switch
can support [9].

Server Parallelism:
Our simulations have a server model that processes 16
packets in parallel. As server hardware varies greatly, we
explore how different amounts of parallelism affect flow
completion times.

Figure 14 reports the reduction in 99.9th percentile
flow completion times for TCP and pFabric as a function
of server parallelism. FastLane’s performance improve-
ment does not diminish as the amount of parallelism in-
creases.

5.2 Implementation Results

Here we discuss the implementation feasibility of our
proposal. For ease of implementation, when developing
FastLane, we disabled the more advanced features of
Linux TCP (i.e., SACK, DSACK, Timestamps, FRTO,
Cubic). To provide an fair head-to-head comparison, we
demonstrate the performance improvement of FastLane
versus TCP with these features disabled. But, we also re-
port how FastLane compares to TCP with all of these fea-

0	
20	
40	
60	
80	
100	

2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	 2	 4	 8	 16	 32	

Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	 Flow	 Size	 (KB)	

20	 40	 60	 80	

Re
du

c&
on

	 T
CP

's
	 C
om

pl
e&

on
	

Ti
m
e	
(%

)	

Frac&on	 of	 Short	 Flows	 (%)	

FL	

Figure 15: Reduction in TCP’s 99.9th percentile flow comple-
tion time when assisted by FastLane.

tures enabled. We show that FastLane still outperforms
TCP, demonstrating its utility.

We begin by running the same base workload as the
simulation, varying the utilization while keeping the
fraction of load contributed by short flows constant at
10% (see Section 5.1.1). Then we evaluate how Fast-
Lane performs under a workload consisting of longer
flow sizes. To avoid the hardware limits of our virtualized
topology (Emulab), we partition the nodes into fronted
and backend servers, with the frontend servers request-
ing data from backend servers.

5.2.1 Varying Utilization

Figure 15 reports the reduction in 99.9th percentile flow
completion times when FastLane assists TCP under var-
ious utilizations. We see that FastLane reduces the flow
completion times of short flows by up to 68% (e.g., at
20% utilization, 8KB flows complete in 4.6 ms with Fast-
Lane as compared to 14.4 ms with unaided TCP). Aver-
age long flow completion times reduce at high utiliza-
tions as well - we report a 23% reduction at 80% load.
But at low utilizations, FastLane’s long flow performance
slightly underperforms unaided TCP’s.

Compared to the implementation results, the simula-
tor reports a greater reduction in flow completion times.
We argue that this is primarily due to the limitations of
our testbed. Our unoptimized version of Linux, coupled
with the burstyness of the workload, leads to server de-
lays that limit our potential to reduce flow completion
times. Evidence of this can be found by looking at the
2KB flows, which do not see as big a reduction because
they typically require that more sockets be created within
a short timespan. Optimizing servers is a large research
undertaking in its own right [18,20]. We anticipate that as
servers continue to be optimized, the benefits of FastLane
will increase, approaching those reported by the simula-
tion.

Table 1 compares FastLane’s completion times to TCP
with SACK, DSACK, Timestamps, FRTO, and Cubic en-
abled. In general, FastLane achieves a comparable re-
duction as that reported in Figure 15, demonstrating its
utility. The one point where FastLane slightly underper-

11

Util 2KB 4KB 8KB 16KB 32KB
20% 51% 61% 68% 63% −4%
40% 55% 63% 64% 55% 46%
60% 44% 53% 58% 51% 40%
80% 32% 42% 48% 40% 22%

Table 1: Reduction in 99.9th percentile flow completion vs TCP
with advanced features.

FL (TCP) FL (TCP-A)
Util 1MB 16MB 64MB 1MB 16MB 64MB
20% -4% -4% -4% 6% 3% 2%
40% 10% 7% 8% 14% 12% 11%
60% 28% 26% 26% 21% 23% 23%
80% 29% 30% 28% 25% 29% 31%

Table 2: Reduction in average completion time of long flows

forms TCP is for 32KB flows at 20% utilization. This
occurs because the inflation in flow completion times oc-
curs after the 99.9th percentile for this flow size, utiliza-
tion, and workload. While not shown in the table, at this
utilization, we do see a reduction of 55% in the 99.95th
percentile completion time for 32KB flows.

5.2.2 Long Flows

Our implementation environment allows us to evaluate
the flow completion times of longer flows, while main-
taining manageable runtimes. Table 2 reports the reduc-
tion in average flow completion times when FastLane is
used versus unaided TCP and TCP with the advanced
features enabled (TCP-A). Flow sizes are 1, 16, or 64
MB with equal probability. No small flows are run in this
experiment.

We see that FastLane reduces average completion
times by as much as 31% at high utilizations. FastLane
slightly underperforms TCP for long flows at light uti-
lizations. This performance impact is small and is ob-
served in traffic scenarios not typically experienced in
datacenters. We conclude that the benefits of FastLane
far outweigh its modest cost.

5.3 Summary

Our conclusions from evaluating FastLane are:
• FastLane reduces 99.9th percentile completion

times of short flows up to 75% over TCP and 50%
over pFabric.

• FastLane’s ability to use packet scatter results in a
24% reduction in long flow completion times versus
TCP. Even in extreme scenarios, FastLane’s long
flow performance stays within 10% of pFabric’s.

• FastLane maintains its performance benefits when
TCP’s advanced features are enabled, demonstrat-
ing its utility.

• With FastLane, average flow completion times for
1-64MB flows increase by 4% at light utilizations,
but decrease by up to 31% at higher loads.

6 Related Work
Researchers have proposed an extensive set of transport
modifications for datacenter networks. DCTCP, HULL,
and D2TCP rely on end-host solutions that avoid / min-
imize modifications to network elements [8, 9, 27]. Fast-
Lane can improve upon these proposals by reducing the
cost of drops.

Proposals such as D3 and PDQ have opted instead to
rely on extensive network modifications to support ex-
plicit reservations [19,29]. During every RTT, these pro-
posals request resources for the next one. Most flows
in the datacenter are short and can complete within
one RTT [12]. FastLane could enable these proposals
to safely transmit in the first RTT, dramatically reducing
flow completion times.

Industry has adopted standardized Ethernet link-layer
improvements, such as Quantized Congestion Notifica-
tions (802.1Qau [1]). FastLane avoids the performance
problems of this approach by directly notifying transport.

[30] proposes to orchestrate the datacenter bridging
protocols [3] into a stack. DeTail, like other lossless in-
terconnects [7], requires relatively larger per-port buffers
to guarantee that packets are not dropped. Back-of-the-
envelope calculations suggest that these requirements are
higher than the buffers currently available for commodity
10 gigabit switches [2].

7 Conclusion
In this paper, we presented FastLane, an agile drop sig-
naling mechanism for improving high-percentile data-
center networking performance. By having switches di-
rectly notify sources when drops occur, FastLane tries to
minimize the delay incurred by senders in detecting and
responding to packet drops.

We demonstrated the efficacy and generality of our
work by modifying TCP and pFabric to take advantage of
FastLane. The testbed experiments and simulations show
that the rapid notification mechanism helps achieve sig-
nificant reduction in worst-case flow completion times,
up to 75%. These improvements do not come at a large
cost— FastLane achieves them even when its bandwidth
and buffers are capped to 1% and 2.5%, respectively.

Perhaps the greatest value of FastLane is that all of
these advantages are transport agnostic and can benefit
many protocols. With the increasing interest in improv-
ing worst-case performance in datacenters, we hope our
efforts are well placed.

8 Acknowledgements
This research is supported in part by NSF CISE Expe-
ditions award CCF-1139158 and DARPA XData Award
FA8750-12-2-0331, and gifts from Amazon Web Ser-
vices, Google, SAP, Cisco, Clearstory Data, Cloudera,
Ericsson, Facebook, FitWave, General Electric, Horton-

12

works, Huawei, Intel, Microsoft, NetApp, Oracle, Sam-
sung, Splunk, VMware, WANdisco and Yahoo!.

References
[1] 802.1qau - congestion notification.

http://www.ieee802.org/1/pages/802.1au.html.

[2] Arista 7050 switches. http://www.aristanetworks.com.

[3] Data center bridging. http://www.cisco.com/en/US/solutions/
collateral/ns340/ns517/ns224/ns783/at a glance c45-
460907.pdf.

[4] Emulab. http://www.emulab.net.

[5] Ns3. http://www.nsnam.org/.

[6] Tcp chimney. http://download.microsoft.com/download/
5/E/6/5E66B27B-988B-4F50-AF3A-C2FF1E62180F/ENT-
T557 WH08.pptx.

[7] ABTS, D., AND KIM, J. High performance datacenter networks:
Architectures, algorithms, and opportunities. Synthesis Lectures
on Computer Architecture 6, 1 (2011).

[8] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE,
J., PATEL, P., PRABHAKAR, B., SENGUPTA, S., AND SRIDHA-
RAN, M. Data center tcp (dctcp). In SIGCOMM (2010).

[9] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B.,
VAHDAT, A., AND YASUDA, M. Less is more: Trading a lit-
tle bandwidth for ultra-low latency in the data center. In NSDI
(2012).

[10] ALIZADEH, M., YANG, S., KATTI, S., MCKEOWN, N., PRAB-
HAKAR, B., AND SHENKER, S. Deconstructing datacenter
packet transport. In Proceedings of the 11th ACM Workshop on
Hot Topics in Networks (New York, NY, USA, 2012), HotNets-
XI, ACM, pp. 133–138.

[11] BAKER, F. Requirements for ip version 4 routers, 1995.

[12] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In Proceedings of the
10th ACM SIGCOMM conference on Internet measurement (New
York, NY, USA, 2010), IMC ’10, ACM, pp. 267–280.

[13] BOSSHART, P., GIBB, G., KIM, H.-S., VARGHESE, G., MCK-
EOWN, N., IZZARD, M., MUJICA, F. A., AND HOROWITZ,
M. Forwarding metamorphosis: fast programmable match-action
processing in hardware for sdn. In SIGCOMM (2013), pp. 99–
110.

[14] CRISAN, D., ANGHEL, A. S., BIRKE, R., MINKENBERG, C.,
AND GUSAT, M. Short and fat: Tcp performance in cee datacen-
ter networks. In Hot Interconnects (2011), IEEE, pp. 43–50.

[15] FLOYD, S., AND HENDERSON, T. The newreno modification to
tcp’s fast recovery algorithm, 1999.

[16] GONT, F. Deprecation of icmp source quench messages, 2012.

[17] GREENBERG, A., HAMILTON, J. R., JAIN, N., KANDULA, S.,
KIM, C., LAHIRI, P., MALTZ, D. A., PATEL, P., AND SEN-
GUPTA, S. Vl2: a scalable and flexible data center network. In
SIGCOMM (2009).

[18] HAN, S., MARSHALL, S., CHUN, B.-G., AND RATNASAMY,
S. Megapipe: a new programming interface for scalable network
i/o. In Proceedings of the 10th USENIX conference on Operating
Systems Design and Implementation (Berkeley, CA, USA, 2012),
OSDI’12, USENIX Association, pp. 135–148.

[19] HONG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing
flows quickly with preemptive scheduling. In ACM SIGCOMM
(August 2012).

[20] KAPOOR, R., PORTER, G., TEWARI, M., VOELKER, G. M.,
AND VAHDAT, A. Chronos: predictable low latency for data cen-
ter applications. In Proceedings of the Third ACM Symposium on
Cloud Computing (New York, NY, USA, 2012), SoCC ’12, ACM,
pp. 9:1–9:14.

[21] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., AND
KAASHOEK, M. F. The click modular router. ACM Trans. Com-
put. Syst. 18 (August 2000).

[22] NICHOLS, K., AND JACOBSON, V. Controlling queue delay.
Queue 10, 5 (May 2012), 20:20–20:34.

[23] OUSTERHOUT, J. K., AGRAWAL, P., ERICKSON, D.,
KOZYRAKIS, C., LEVERICH, J., MAZIÈRES, D., MITRA,
S., NARAYANAN, A., ROSENBLUM, M., RUMBLE, S. M.,
STRATMANN, E., AND STUTSMAN, R. The case for ramclouds:
Scalable high-performance storage entirely in dram. In SIGOPS
OSR (2009).

[24] POSTEL, J. Internet control message protocol, 1981.

[25] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A.,
WISCHIK, D., AND HANDLEY, M. Improving datacenter perfor-
mance and robustness with multipath tcp. In SIGCOMM (2011).

[26] SAROLAHTI, P. Linux tcp.
http://0gram.me/misc/network/linuxtcp.pdf.

[27] VAMANAN, B., HASAN, J., AND VIJAYKUMAR, T. Deadline-
aware datacenter tcp (d2tcp). In Proceedings of the ACM SIG-
COMM 2012 conference on Applications, technologies, archi-
tectures, and protocols for computer communication (New York,
NY, USA, 2012), SIGCOMM ’12, ACM, pp. 115–126.

[28] VASUDEVAN, V., PHANISHAYEE, A., SHAH, H., KREVAT, E.,
ANDERSEN, D. G., GANGER, G. R., GIBSON, G. A., AND
MUELLER, B. Safe and effective fine-grained TCP retransmis-
sions for datacenter communication. In SIGCOMM (2009).

[29] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND
ROWTRON, A. Better never than late: meeting deadlines
in datacenter networks. In SIGCOMM (2011).

[30] ZATS, D., DAS, T., MOHAN, P., BORTHAKUR, D., AND KATZ,
R. H. Detail: Reducing the flow completion time tail in data-
center networks. In Proceedings of the ACM SIGCOMM 2012
conference (New York, NY, USA, Aug 2012), SIGCOMM ’12,
ACM.

13

